Cerebrovascular segmentation from TOF using stochastic models
نویسندگان
چکیده
In this paper, we present an automatic statistical approach for extracting 3D blood vessels from time-of-flight (TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset are classified as either blood vessels or background noise. The observed volume data is modeled by two stochastic processes. The low level process characterizes the intensity distribution of the data, while the high level process characterizes their statistical dependence among neighboring voxels. The low level process of the background signal is modeled by a finite mixture of one Rayleigh and two normal distributions, while the blood vessels are modeled by one normal distribution. The parameters of the low level process are estimated using the expectation maximization (EM) algorithm. Since the convergence of the EM is sensitive to the initial estimate of the model parameters, an automatic method for parameter initialization, based on histogram analysis, is provided. To improve the quality of segmentation achieved by the proposed low level model especially in the regions of significantly vascular signal loss, the high level process is modeled as a Markov random field (MRF). Since MRF is sensitive to edges and the intracranial vessels represent roughly 5% of the intracranial volume, 2D MRF will destroy most of the small and medium sized vessels. Therefore, to reduce this limitation, we employed 3D MRF, whose parameters are estimated using the maximum pseudo likelihood estimator (MPLE), which converges to the true likelihood under large lattice. Our proposed model exhibits a good fit to the clinical data and is extensively tested on different synthetic vessel phantoms and several 2D/3D TOF datasets acquired from two different MRI scanners. Experimental results showed that the proposed model provides good quality of segmentation and is capable of delineating vessels down to 3 voxel diameters.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملLeaf segmentation from ToF data for robotized plant probing
Supervision of long-lasting extensive botanic experiments is a promising robotic application that some recent technological advances have made feasible. Plant modelling for this application has strong demands, particularly in what concerns 3D information gathering and speed. This paper shows that Time-ofFlight (ToF) cameras achieve a good compromise between both demands. A new method is propose...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملStatistical-Based Approach for Extracting 3D Blood Vessels from TOF-MyRA Data
In this paper we present an automatic statistical intensity basedapproach for extracting the 3D cerebrovascular system from time-of-flight (TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset are classified as either background tissues, which are modeled by a finite mixture of one Rayleigh and two normal distributions, or blood vessels, which are modeled by one normal dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image analysis
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2006